close
標題:
我想問下直線的坐標幾何...有冇人識做牙?!
發問:
1.求頂點坐標為A(1,1) , B(-2,5)及C(5,4)的三角形周界 2.証明頂點坐標為P(-1,-2) , Q(6,2)及R(2,4)的三角形為直角三角形 3.証明三點P(2,-2) , Q(3,3)及R(5,13)共線 4.如果通過M(-3 , a)及N(12 , -1)兩點的直線的傾角是57°。求a , 準確至一位小數
1. AB = √[(1 + 2)^2 + (1 - 5)^2] = 5 AC = √[(1 - 5)^2 + (1 - 4)^2] = 5 BC = √[(-2 - 5)^2 + (5 - 4)^2] = 5√2 三角形周界 = 10 + 5√2 2.PR斜率 = (4 + 2)/(2 + 1) = 2 QR斜率 = (4 - 2)/(2 - 6) = -1/2 PR斜率 x QR斜率 = (2)(-1/2) = -1 => PR 垂直QR => 三角形為直角三角形 3.PR斜率 = (13 + 2)/(5 - 2) = 5 QR斜率 = (13 - 3)/(5 - 3) = 5 因此PQR 共線 4. MN斜率 = (-1 - a)/(12 + 3) = -(1 + a)/15 = tan 57 -(1 + a) = 15 * 1.54 = 23.1 a + 1 = -23.1 a = -24.1
其他解答:
這裏可以幫到你 http://hkyahoo.dns23.ceshi6.com/yahoo.com.hk/hk/auction/1118037410
我想問下直線的坐標幾何...有冇人識做牙?!
發問:
1.求頂點坐標為A(1,1) , B(-2,5)及C(5,4)的三角形周界 2.証明頂點坐標為P(-1,-2) , Q(6,2)及R(2,4)的三角形為直角三角形 3.証明三點P(2,-2) , Q(3,3)及R(5,13)共線 4.如果通過M(-3 , a)及N(12 , -1)兩點的直線的傾角是57°。求a , 準確至一位小數
此文章來自奇摩知識+如有不便請留言告知
最佳解答:1. AB = √[(1 + 2)^2 + (1 - 5)^2] = 5 AC = √[(1 - 5)^2 + (1 - 4)^2] = 5 BC = √[(-2 - 5)^2 + (5 - 4)^2] = 5√2 三角形周界 = 10 + 5√2 2.PR斜率 = (4 + 2)/(2 + 1) = 2 QR斜率 = (4 - 2)/(2 - 6) = -1/2 PR斜率 x QR斜率 = (2)(-1/2) = -1 => PR 垂直QR => 三角形為直角三角形 3.PR斜率 = (13 + 2)/(5 - 2) = 5 QR斜率 = (13 - 3)/(5 - 3) = 5 因此PQR 共線 4. MN斜率 = (-1 - a)/(12 + 3) = -(1 + a)/15 = tan 57 -(1 + a) = 15 * 1.54 = 23.1 a + 1 = -23.1 a = -24.1
其他解答:
這裏可以幫到你 http://hkyahoo.dns23.ceshi6.com/yahoo.com.hk/hk/auction/1118037410
文章標籤
全站熱搜
留言列表